### Group - A

# (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

i) if 
$$a = (1, 0, 3)$$
 and  $b = (-1, 2, 5)$  then  $a + 3b$  is equal to

$$\checkmark$$
a)  $(-2, 6, 18)$ 

$$\checkmark$$
a)  $(-2, 6, 18)$  b)  $(2, -6, -18)$ 

c) 
$$(2, -6, 18)$$

d) 
$$(1,3,5)$$

ii) If  $\sum_{n} |a_n|$  is convergent, then  $\sum_{n} a_n$  is

√a) convergent

b) divergent

c) oscillatory

d) none of these

iii) A bounded sequence is

√a) convergent

b) divergent

c) oscillatory

d) none of these

iv) The series  $\sum \frac{1}{n\sqrt{n+1}}$  is

√a) convergent

## POPULAR PUBLICATIONS

- v) The integrating factor of  $\frac{dy}{dx} + 2xy = x^3$  is

- a)  $x^3$  b)  $x^2$   $(c) e^{x^2}$  d)  $e^{x^3}$

4-01-2-19-3 72-5) when

- vi) The infinite series  $\sum_{n=1}^{\infty} \frac{n}{n+1}$  is

- a) Convergent 

  b) Divergent c) Oscillatory d) None of these
- vii) If the vectors (5,2,3),(7,3,a),(9,4,5) of a vector space  $\mathbb{R}^3$  over  $\mathbb{R}$  be linearly independent, then the value of a is not equal to
  - √a) 2

- √b) 3 √c) 1 √d) 0

The Holds in

- viii) The sequence  $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$  is converges to
  - a) ∞

√b) 0

ix) The order and degree of the differential equation

$$\frac{d^2y}{dx^2} = 1 + 2\left(\frac{dy}{dx}\right) + \left(\frac{dy}{dx}\right)^3$$
 are

- b) 1, 2

- c) 1, 3 d) 3, 1

- x) The sequence  $\{(-1)^n\}$  is
  - a) Convergent
- √b) Oscillatory
- c) Divergent
- er in Committee and the state of the d) None of these
- xi) The general solution of  $\log \frac{dy}{dx} = x y$  is
  - $\sqrt{a}$  e<sup>y</sup> e<sup>x</sup> = c b) e<sup>y</sup> + e<sup>x</sup> = c
- c)  $e^{y+x}=c$

- xii) Which of the following pair can form a basis of  $R^2$ ?

  - a)  $\{(1,2),(2,4)\}$  b)  $\{(0,0),(3,33)\}$
- c)  $\{(2,2),(3,3)\}$   $\checkmark$ d)  $\{(1,1),(1,2)\}$

xiii) The particular integral of  $(d^2y/dx^2) - 3(dy/dx) + 2y = \sin 3x$  is

a) 
$$1/130(9\cos 3x - 7\sin 3x)$$

✓b) 
$$1/130(7\cos 3x - 9\sin 3x)$$

c)  $1/130\sin 3x$ 

d) none of these

### Group - B

## (Short Answer Type Questions)

2. Prove that the vectors  $\{(1,2,2),(2,1,2),(2,2,1)\}$  are linearly independent in  $\mathbb{R}^3$ . See Topic: LINEAR ALGEBRA, Short Answer Type Question No. 5.

3. Test the convergence of the series: 
$$1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \dots$$

See Topic: SERIES, Long Answer Type Question No. 5(a).

4. Solve: 
$$e^{y}(1+x^{2})\frac{dy}{dx}-2x(1+e^{y})=0$$

See Topic: DIFFERENTIAL EQUATIONS, Short Answer Type Question No. 9.

5. Define a subspace of a vector space. Show that the intersection of two subspaces of a vector space is a subspace.

See Topic: LINEAR ALGEBRA, Short Answer Type Question No. 1.

6. Show that the sequence  $\sqrt{2}$ ,  $\sqrt{2+\sqrt{2}}$ ,  $\sqrt{2+\sqrt{2}+\sqrt{2}}$  ...... Converges to 2.

See Topic: SEQUENCE, Long Answer Type Question No. 5.

# Group - Criminal and continuous spectrome a Group - Criminal LAPPS with a serious street for

## (Long Answer Type Questions)

- 7. a) Test the convergence of the following series:  $\sum \frac{n^2-1}{n^2+1}x^n$
- b) Examine whether the differential equation  $(e^y + 1)\cos x dx + e^y \sin y dy = 0$  is exact or not.
- c) Find the basis and the dimension of the subspace W of  $R^3$  where  $W = \{(x, y, z) \in R^3 : 2x y + 3z = 0\}$
- a) See Topic: SERIES, Long Answer Type Question No. 2(i).
- b) See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 6(c).
- c) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 18.

orienti (pere) erit brie (o

8. a) Solve 
$$\frac{dy}{dx} = \sin(x+y)$$

- b) Let  $T: \mathbb{R}^2 \to \mathbb{R}^2$  be a linear transformation such that T(1,1)=(2,-3) and T(1,-1)=(4,7). Find the matrix of T.
- c) Prove that the sequence  $\left\{\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2}\right\}$  is convergent. Find its limit
- a) See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 14.
- b) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 19.
- c) See Topic: SEQUENCE, Long Answer Type Question No. 6.
- 9. a) Form a differential equation by eliminating A and B from the following:  $y = A\cos x + B\sin x$
- b) Find whether the following vectors are linearly dependent or not  $\{(1,2,3),(2,3,1),(3,2,1)\}$
- c) Discuss the convergence of the series  $\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2 + 1}$
- a) See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 15.
- b) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 20.
- c) See Topic: SERIES, Long Answer Type Question No. 10.
- 10. a) Solve:  $\frac{dy}{dx} + y \tan x = y^3 \cos x$
- b) For what values of x the three vectors (1,1,2),(x,1,1),(1,2,1) are linearly independent.

to hour work had the district the Court of

- c) Solve:  $y = px + \sqrt{1 + p^2}$
- a) & c) See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 16(a) & (b).
- b) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 21.
- 11. a) Prove that the vectors  $(x_1, y_1)$  and  $(x_2, y_2)$  are linearly dependent, if and only if  $x_1y_2-x_2y_1=0$
- b) Test the convergence of the series  $\sum \frac{x^n}{n\sqrt{n+1}}$
- c) Find the linear transformations T, where  $T:R^3\to R^2$  such that  $T(1,0,0)=(1,2)\,T(0,1,0)=(1,-1)$  and T(0,0,1)=(1,0).

MATHEMATICS - II

g) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 5(c).

b) See Topic: SERIES, Long Answer Type Question No. 11.

c) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 22.